NASA Reveals Latest Warp-Drive Ship Designs

Look at the picture above. Nope, it’s not a snapshot of a Star Wars scene, or any other sci-fi movie. It’s what you get if you combine a NASA physicist working on achieving faster-than-light travel with a 3D artist, and the result is freaking AWESOME. And yes, you heard correctly, there are scientists working on faster-than-light travel, and this is what the ship could look like in the future.

You might be thinking to yourself right now “Faster-than-light travel? But Einstein!” Yes, according to Einstein’s theory of relativity, nothing can travel faster than the speed of light. But scientists are looking for ways to get around this, and a team based at NASA Eagleworks, led by Dr Harold “Sonny” White, have been working on just that. They discovered a loophole that could theoretically allow faster-than-light travel without breaking the laws of physics. How? Warp drive, of course!

If a spaceship could be designed in such a way that it created a warp bubble, then the space in front of the ship would be compressed and the space behind would expand. This would result in space-time moving around the object, repositioning the ship without it actually moving.

Freedawn scientia - NASA's new spaceship design for warp drive

“Remember, nothing locally exceeds the speed of light, but space can expand and contract at any speed,” White told io9.

So of course, White’s new design incorporates these ideas and involves “a sleek ship nestled at the center of two enormous rings, which create the warp bubble,” 3D artist Mark Rademaker explained to io9. You can check out some more of Rademaker and White’s ship design here.

Think this sounds a little too futuristic? According to a report by Gizmodo, White’s team has been using a test instrument called a White-Juday Warp Field Interferometer in order to try and generate and detect microscopic instances of warp bubbles. If they can achieve this, then who knows how quickly the technology could advance. “Perhaps a ‘Star Trek’ experience within our lifetime is not such a remote possibility” says White.


NASA’s Status of Warp Drive

“Warp Drives”, “Hyperspace Drives”, or any other term for Faster-than-light travel is at the level of speculation, with some facets edging into the realm of science. We are at the point where we know what we do know and know what we don’t, but do not know for sure if faster than light travel is possible.

Freedawn Scientia - NASA status of warp drive

The bad news is that the bulk of scientific knowledge that we have accumulated to date concludes that faster than light travel is impossible. This is an artifact of Einstein’s Special Theory of Relativity. Yes, there are some other perspectives; tachyons, wormholes, inflationary universe, spacetime warping, quantum paradoxes…ideas that are in credible scientific literature, but it is still too soon to know if such ideas are viable.Freedawn Scientia - NASA status of warp drive

One of the issues that is evoked by any faster-than-light transport is time paradoxes: causality violations and implications of time travel. As if the faster than light issue wasn’t tough enough, it is possible to construct elaborate scenarios where faster-than-light travel results in time travel. Time travel is considered far more impossible than light travel.

Ever since the sound barrier was broken, people have been asking: “Why can’t we break the light speed barrier too, what’s the big difference?” It is too soon to tell if the light barrier can be broken, but one thing is certain — it’s a wholly different problem than breaking the sound barrier. The sound barrier was broken by an object that was made of matter, not sound.Freedawn Scientia - NASA status of warp drive The atoms and molecules that make up matter are connected by electromagnetic fields, the same stuff that light is made of. In the case of the light speed barrier, the thing that’s trying to break the barrier is made up of the same stuff as the barrier itself. How can an object travel faster than that which links its atoms? Like we said, it’s a wholly different problem than breaking the sound barrier.

Special Relativity

Here is a snap shot of the theory that sums up the problem: “Special Relativity”. Actually Special Relativity is pretty simple in its construction… Just start with 2 simple rules:

Freedawn Scientia - NASA status of warp drive

Rule Number 1: The distance you’ll travel (d) depends on how fast you move (v), for how long you’re moving (t). If you drive 55 mph for one hour, you’ll have covered 55 miles. – simple.

Rule Number 2: — This is the mind boggling one — No matter how fast you’re moving, you’ll always see the speed of light as being the same.

When you combine these together and compare what one traveler “sees” relative to another traveler at a different speed – that’s when the problems come into play. Let me give you another way to picture this. Close your eyes. Imagine that the only sense that you had was the sense of hearing. All that you know is sounds. You identify things by how they sound. So when a train goes by, did its horn really change? We know that the horn was always tooting the same tone, but it was the train’s motion that made it appear to change because of something called the Doppler shift. Its a similar situation with light. Everything we know around us we know by light, or more generally electromagnetism. What we see, what we feel (the air molecules bouncing off our skin), what we hear (air molecules bouncing off each other in waves of pressure), even the propagation of time, are all governed by electromagnetic forces. So when we start moving at speeds approaching the speed by which we are getting all our information, our information gets distorted. In principle it’s that simple. Understanding it well enough to do something about it, well that’s a different matter.

One of the consequences of this Special Relativity is the light speed barrier. Here’s another way to look at it. To move faster, you add energy. But when you get going near the speed of light, the amount of energy you need to go faster balloons to infinity! To move a mass at the speed of light would take infinite energy. It appears that there is a distinct barrier here.

Freedawn Scientia - NASA status of warp drive, general relativity barrier

Is there any way around Special Relativity?

Worm Hole transportation

Just when you thought it was confusing enough, those physicist had to come up with wormholes. Here’s the premise behind a “wormhole”. Although Special Relativity forbids objects to move faster than light within spacetime, it is known that spacetime itself can be warped and distorted. It takes an enormous amount of matter or energy to create such distortions, but distortions are possible, theoretically. To use an analogy: even if there were a speed limit to how fast a pencil could move across a piece of paper, the motion or changes to the paper is a separate issue. In the case of the wormhole, a shortcut is made by warping space (folding the paper) to connect two points that used to be separated. These theories are too new to have either been discounted or proven viable. And, yes, wormholes do invite the old time travel paradox problems again.

Here’s one way to build one:

First, collect a whole bunch of super-dense matter, such as matter from a neutron star. How much?- well enough to construct a ring the size of the Earth’s orbit around the Sun. Then build another ring where you want the other end of your wormhole. Next, just charge ‘em up to some incredible voltage, and spin them up to near the speed of light — both of them.

No problem? Well if you could do all that, and notice you already had to be where you wanted to go to, I’m sure you could think of more clever ways to travel. Don’t expect any wormhole engineering any time soon. There are other ideas out there too – ideas that use “negative energy” to create and to keep the wormhole open.

Alcubierre’s “Warp Drive”

Here’s the premise behind the Alcubierre “warp drive”: Although Special Relativity forbids objects to move faster than light within spacetime, it is unknown how fast spacetime itself can move. To use an analogy, imagine you are on one of those moving sidewalks that can be found in some airports. The Alcubierre warp drive is like one of those moving sidewalks. Although there may be a limit to how fast one can walk across the floor (analogous to the light speed limit), what about if you are on a moving section of floor that moves faster than you can walk (analogous to a moving section of spacetime)? In the case of the Alcubierre warp drive, this moving section of spacetime is created by expanding spacetime behind the ship (analogous to where the sidewalk emerges from underneath the floor), and by contracting spacetime in front of the ship (analogous to where the sidewalk goes back into the floor). The idea of expanding spacetime is not new. Using the “Inflationary Universe” perspective, for example, it is thought that spacetime expanded faster than the speed of light during the early moments of the Big Bang. So if spacetime can expand faster than the speed of light during the Big Bang, why not for our warp drive? These theories are too new to have either been discounted or proven viable.

Any other sticky issues?

Yes… First, to create this effect, you’ll need a ring of negative energy wrapped around the ship, and lots of it too. It is still debated in physics whether negative energy can exist. Classical physics tends toward a “no,” while quantum physics leans to a “maybe, yes.” Second, you’ll need a way to control this effect to turn it on and off at will. This will be especially tricky since this warp effect is a separate effect from the ship. Third, all this assumes that this whole “warp” would indeed move faster than the speed of light. This is a big unknown. And fourth, if all the previous issues weren’t tough enough, these concepts evoke the same time-travel paradoxes as the wormhole concepts.

Negative mass propulsion

It has been shown that is theoretically possible to create a continuously propulsive effect by the juxtaposition of negative and positive mass and that such a scheme does not violate conservation of momentum or energy. A crucial assumption to the success of this concept is that negative mass has negative inertia. Their combined interactions result in a sustained acceleration of both masses in the same direction. This concept dates back to at least 1957 with an analysis of the properties of hypothetical negative mass by Bondi, and has been revisited in the context of propulsion by Winterberg and Forward in the 1980’s.

Regarding the physics of negative mass, it is not known whether negative mass exists or if it is even theoretically allowed, but methods have been suggested to search for evidence of negative mass in the context of searching for astronomical evidence of wormholes.

Millis’s hypothetical “Space Drives”

A “space drive” can be defined as an idealized form of propulsion where the fundamental properties of matter and spacetime are used to create propulsive forces anywhere in space without having to carry and expel a reaction mass. Such an achievement would revolutionize space travel as it would circumvent the need for propellant. A variety of hypothetical space drives were created and analyzed by Millis to identify the specific problems that have to be solved to make such schemes plausible. These hypothetical drives are just briefly introduced here. Please note that these concepts are purely hypothetical constructs aimed to illustrate the remaining challenges. Before any of these space drives can become reality, a method must be discovered where a vehicle can create and control an external asymmetric force on itself without expelling a reaction mass and the method must satisfy conservation laws in the process.

[Note: This section is excerpted from Millis’ “Challenge to Create the Space Drive,” in the AIAA Journal of Propulsion and Power, Vol.13, No.5, pp. 577-582, Sept.-Oct. 1997. This 6 page report uses 7 hypothetical space drive concepts to highlight the unsolved physics and candidate next steps toward creating a propellantless space drive. It also contains figures for each concept which are not currently available electronically.]

Hypothetical Differential Sail: Analogous to the principles of an ideal radiometer vane, a net difference in radiation pressure exists across the reflecting and absorbing sides. It is assumed that space contains a background of some form of isotropic medium (like the vacuum fluctuations or Cosmic Background Radiation) that is constantly impinging on all sides of the sail.

Hypothetical Diode Sail: Analogous to a diode or one-way mirror, space radiation passes through one direction and reflects from the other creating a net difference in radiation pressure.

Hypothetical Induction Sail: Analogous to creating a pressure gradient in a fluid, the energy density of the impinging space radiation is raised behind the sail and lowered in front to create a net difference in radiation pressure across the sail.

Hypothetical Diametric Drive: This concept considers the possibility of creating a local gradient in a background scalar property of space (such as gravitational potential) by the juxtaposition of diametrically opposed field sources across the vehicle. This is directly analogous to negative mass propulsion. The diametric drive can also be considered analogous to creating a pressure source/sink in a space medium as suggested with the Induction Sail.

Hypothetical Pitch Drive: This concept entertains the possibility that somehow a localized slope in scalar potential is induced across the vehicle which causes forces on the vehicle. In contrast to the diametric drive presented earlier, it is assumed that such a slope can be created without the presence of a pair of point sources. It is not yet known if and how such an effect can be created.

Hypothetical Bias Drive: This concept entertains the possibility that the vehicle alters the properties of space itself, such as the gravitational constant, G, to create a local propulsive gradient. By modifying Newton’s constant to have a localized asymmetric bias, a local gradient similar to the Pitch Drive mechanism results.

Hypothetical Disjunction Drive: This concept entertains the possibility that the source of a field and that which reacts to a field can be separated. By displacing them in space, the reactant is shifted to a point where the field has a slope, thus producing reaction forces between the source and the reactant. Although existing evidence strongly suggests that the source, reactant, and inertial mass properties are inseparable, any future evidence to the contrary would have revolutionary implication to this propulsion application.




Leave a Reply

Be the First to Comment!

Leave a Reply